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Most of the information necessary for driving a vehicle is regarded as visual information. In spite of its impor-
tance, visibility conditions at the time of a crash are often not documented at a high level of detail. Past studies
have not examined the quantified values of visibility and its association with crashes. The current study merged
data collected from theNational Oceanic and Atmospheric Administration (NOAA)with 2010–2012 Florida crash
data. From the thousands of logged weather events compiled by the NOAA, the researchers isolated periods of
normal visibility and comparable periods of reduced visibility in amatched-pairs study. The NOAA data provided
real visibility score based on the spatiotemporal data of the crashes. Additionally, the crash data, obtained from
Roadway InformationDatabase (RID), contains several geometric and traffic variables that allow for effects of fac-
tors and visibility. The study aims to associate crash occurrence under different levels of visibility with factors in-
cluded in the crash database by developing ordinal logistic regression. The intent is to observe how different
visibility conditions contribute to a crash occurrence. The findings indicate that the likelihood of a crash increase
during periods of low visibility, despite the tendency for less traffic and for lower speeds to prevail during these
times. The findings of this study will add valuable knowledge to the realm of the impact of visibility in theway of
using and designing appropriate countermeasures.
© 2017 International Association of Traffic and Safety Sciences. Production and hosting by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Human error is the most dominant factor in traffic crashes. This error
ranges from complete negligence (e.g., distracted or impaired driving) to
limitations of human abilities (e.g., slower reflexeswith age, low visibility
in inclement weather). One limitation that is often neglected is reduced
visibility during inclement weather. To reduce the frequency of crashes
that occur in inclementweather, it is necessary to investigate the key fac-
tors associatedwith these crashes thoroughly. This study seeks to identify
the effects of reduced visibility on the likelihoodof crashes and the factors
that influence crashes during periods of reduced visibility.

Inclement or adverse weather presents a safety concern for vehicu-
lar traffic from multiple perspectives. One is the moisture on the road
that reduces friction. Friction is reduced even more if the temperature
is near or below freezing. Theofilatos and Yannis summarized studies
presented at conferences or published in international journals that
focus on the effects of traffic, weather, and the combined effect of traffic
andweather on road safety. The research synthesis showed that precip-
itation has beenwidely investigated, and there is a constant effect of the
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increase in crashes. The risk posed by rainfall is due to a combination of
poor road friction and low visibility. Other studies have found that
injury severity in low visibility conditions was higher and head-on
and rear-end collisions were the common types of crashes [1].

Visibility can be measured with specialized instrumentation. The
National Oceanic and Atmospheric Administration (NOAA) regularly
measures atmospheric and ground-level conditions, including visibility,
at airports so pilots and air traffic control can make informed decisions
for flying. These readings are stored in historical databases maintained
by the NOAA. The key objective of this research is to identify the impact
of visibility on crash outcomes so that appropriate countermeasures can
be used to reduce visibility related traffic crashes. To accomplish the re-
search goals, the study used historical weather data to determine the
exact visibility score. The spatiotemporally determined visibility scores
were merged with crash data to determine the association.

1.1. Driver adaptation in inclement weather

Drivers tend to change their behavior to adapt to new conditions
presented by inclement weather. Studies evaluating driver behavior in
inclement weather have been oriented toward large-scale observations
rather than changes at the level of the individual driver. For example, re-
searchers identified how inclement weather affects traffic speed, flow,
and density on freeways in Seattle, Baltimore, and Minneapolis-Saint
Paul [2]. Light rain was found to reduce free-flow speed 2 to 3.6%,
ting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
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Fig. 1. Flowchart of data compilation (FL indicates Florida).
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capacity 10 to 11%, and the speed at capacity 8 to 10%. The reductions in
free-flow speed and capacity increased with rain intensity, and snow
had a larger impact on free-flow speed and capacity than rain. The re-
searchers also found that visibility affects traffic conditions. Free-flow
speeds on freeways in inclement weather were also studied in Spain
[3], identifying a reduction in speed by 5.5 to 7 km/h for rain and 9 to
13.7 km/h for snow. The wind affects free-flow speed only when the
wind speed is above 8 m/s. Visibility affects free-flow speed only
when visibility is b2000 m. In a separate study [4], the wind speed
was also shown to have a small effect on traffic compared to other
weather factors. Analyzing traffic volumes, the researchers identified
that volume is reduced 13 to 34% during inclementweather. Traffic vol-
ume and speed have also been observed to decrease during inclement
weather in China [5].

In support of drivers responding to inclement weather by driving
more conservatively, the research indicates that there is a change in traffic
during inclement weather, not only in characteristics such as speed and
capacity but also in the number of vehicles on roads. The reduction in traf-
fic volumes during inclement weather is a reflection of driving as a de-
rived demand. Depending on the driver and the severity of the weather,
it is worth postponing the commercial and recreational activities that
would have occurred to a later time. While less driving occurs during in-
clement weather, there are also reductions in free-flow and operating
speeds. It suggests that, while some drivers forego driving altogether,
those that still choose to drive do so with some level of caution.

Whilemanydrivers naturally drive slower duringperiods of inclement
weather and low visibility, some agencies use variable speed limits on
changeable message signs to encourage all drivers to respond similarly.
Hassan et al. [6] surveyed drivers in Florida to investigatewhether drivers
respond to reduced speed limits in low visibility. Their models indicate
that drivers 18 to 25 years and female drivers 51 years and older are
more likely to reduce their speed in response to a variable speed limit
when it is used during fog in low to medium-high traffic. Drivers are
also more likely to reduce their speed if they are on a two-lane road.

1.2. Previous safety findings

Despite the behavioral changes triggered by inclement weather, there
are safety concerns with driving in poor conditions. Several studies have
focused on the effects of weather on crashes, including those related to
visibility. One notable area for studying weather and visibility effects has
been the state of Florida, which has several locations that frequently expe-
rience fog. Abdel-Aty et al. [7] compared crashes occurring in Florida dur-
ingperiods of fog and smokewith crashesduringperiods of clear visibility.
They identified that there are a disproportionate number of crashes in fog
and smoke when the speed limit is 55mph or higher, light conditions are
dark, and there is no street lighting. Anodds ratio analysis showed that the
probability of a crash in fog or smoke is 3.24 timesmore likely to result in a
severe injury and is 1.53 times more likely to be a multiple vehicle crash.
Head-on collisions are also more likely to occur. One interesting note is
that the likelihood of young and middle-aged drivers to be in a crash in-
creased during fog and smoke, but not for old drivers, suggesting that
old drivers appropriately apply more caution in periods of low visibility.
Also in Florida, Wang et al. [8] studied crashes on expressway ramps
during periods of low visibility, finding an increase in the likelihood of a
crash as visibility decreases. Though not focused on visibility, Sun et al.
[9] calculated an increase in crash risk for rainy weather compared to
dry weather. Das and Sun used crash data of Louisiana to investigate the
pattern of crashes under the rainy weather [10].

Hassan and Abdel-Aty investigated whether real-time traffic flow
data can be used to predict crashes under reduced visibility conditions.
Researchers collected traffic flow data from loop detectors and crash
records from two freeways in Florida during December 2007 and
March 2009. There were 2984 total crashes. Of these crashes, 125 oc-
curred under reduced visibility conditions, and only 67 reduced visibility
crashes had traffic flowdata. The study used a Random Forest analysis to
Please cite this article as: S. Das, et al., Association of reduced visibility w
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identify significant variables, and a log odds ratiowas used for predicting
crashes. Three significant variables foundwere nearest upstream station
speed, nearest downstream station speed (both 5 to 10 min before
crash), and average occupancy at nearest downstream station 10 to
15 min before crash. The authors interpreted these results to mean
that higher occupancy coupled with the increase of speed increases the
likelihood of a crash between the upstream and downstream points
[11]. In another study, Abdel-Aty and Hassan used loop detector data
from interstate freeways and expressways in Florida to further predict
reduced visibility related crashes using real-time data. Researchers
adopted a Bayesian matched case-control logistic regression to analyze
the crash data. When comparing the model that used loop detector
data to automatic vehicle detection data, the study concludes that it is
better to use loop detector data to predict crashes due to reduced visibil-
ity. The models developed in the study show that variation in speed can
increase the risk of a crash when visibility is reduced [12].

The intent is to associate crash injury severity with visibility issues.
Many studies claimed that visibility has somewhat associationwith injury
severity. However, the quantification was not often conducted at the
disaggregate level. This study aims to mitigate the current research gap.

2. Data collection and processing

The research team assembled a database collected in Florida from
two different sources. These two sources are 1) the National Oceanic
and Atmospheric Administration (NOAA) airport weather station data,
and 2) Strategic Highway Research Program 2 (SHRP-2) Roadway
Information Database (RID) data.

Fig. 1 illustrates a framework of the data compilation work to pre-
pare the final dataset [13].While low-visibility events tend to be associ-
ated with weather, there is one notable exception. Smoke is not a direct
result of weather or precipitation, but usually a consequence of human
dealings. The impact of smoke on crashes, in addition to the effects of
fog, has been studied in previous work [7]. Smoke-related visibility
events are infrequent and have a dramatically different quality than
periods of reduced visibility caused by precipitation and moisture
(such as fog or rain) because there is no water on the windshield nor
need to use wipers [7].
ith crash outcomes, IATSS Research (2017), https://doi.org/10.1016/
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2.1. NOAA weather data

The weather data used in the analysis was extracted from data
collected byweather stations at airports in Florida and available in data-
bases maintained by the NOAA. The equipment at each weather station
reports hourlymeasurements but increases the frequencywhen there is
a change in reported visibility. This results in accurate visibility informa-
tion in real time to provide necessary alerts for periods of low visibility.
Each entry in the original weather data included a visibility level
(inmiles), temperature, and a code for the type of weather. Researchers
sifted through the weather data to identify periods when the visibility
was within a defined range of poor visibility (0–0.5 miles) and medium
visibility (0.5–4.0 miles).

The categorical options for the type of weather include events such
as rain, thunderstorm, drizzle, mist, hail, snow, and fog. Modifiers
“light” or “heavy” can be applied to indicate a heavy thunderstorm or
light rain. Because different types of weather events cause reduced
visibility, it was critical to have consistency in the types of weather
observedwithin the same category of visibility. Fog is, therefore, the pri-
mary weather event associated with poor visibility; mist and rain are
the primary weather events for medium visibility. Any events of snow,
freezing temperatures, thunderstorms, and hail were removed in an
effort to focus on reduced visibility. These other events are less frequent
than fog, mist, and rain, and they are accompanied by characteristics
such as reduced friction, wind speed, debris, or a need for rapid wind-
shieldwipers, thus adding variables thatmay hinder discoveries specific
to a measure of atmospheric visibility. Windshield wipers, despite their
utility in removing the precipitation, can be distracting and intermit-
tently impede the driver's vision [14]. Smoke was also occasionally the
cause of low visibility. Periodswith smokewere removed from the anal-
ysis to focus exclusively on reduced visibility associated with moisture.

Each period of reduced visibility was matched with a period of nor-
mal visibility (9–10 mi) precisely one week earlier or one week later.
This matching procedure, similar to the method used by Sun et al. [9],
produced a control sample. This approach addresses spatial and tempo-
ral variations that are found in crash frequencies, where crashes can be
more frequent during certain times of the year or in certain locations.
Time periods with reduced visibility that could not be matched with a
control period of reasonable visibility (either one week earlier or one
week later) were removed. This reduction is around 7% of the total
data. Bothmatches were removed if either the control or the test period
included a state or national holiday or other day near the holiday when
travel would be different from that of a typical day. The reduced or final
data is around 90% of the total data. If visibility is assumed to have no
effect on crash frequencies, the number of crashes observed during
the tested periods of reduced visibility should be equivalent to the
number of crashes observed during the matched control period.

2.2. SHRP2 RID crash data

Crash records from 2010 to 2012 were acquired from the SHRP-2 RID
data and included both the crash-level (e.g. Annual Average Daily Traffic
or AADT, the percentage of trucks, shoulder width, skid number, lighting
condition, and facility type) and vehicle-level (e.g. number of vehicles,
driver age, severity) fields. Crash data and vehicle data were merged to
develop a general dataset involving required variables. Person level infor-
mation was provided in vehicle level data. The final dataset contained
unique information on person level. The recorded locations of the crashes
were used to isolate the crashes to those occurring 5 miles within an air-
port, and the recorded times of the crashes were used to further reduce
the crash dataset to those crashes occurring during a period of interest,
whether during a test period of reduced visibility or a control period of
normal visibility. A map graphically showing the airports, the 5-mile
buffers, and observed crashes is shown in Fig. 2.

A preliminary data exploration was first conducted to examine the
significant variables that may contribute to crash occurrence due to
Please cite this article as: S. Das, et al., Association of reduced visibility w
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reduced visibility. The raw crash data, compiled from state maintained
police records and supplemented with roadway information from
SHRP-2, contain several fields that can be tested as variables. While the
focus of this study is visibility, the influence of the road features and con-
ditions at the time of the crash should be accounted for in studying how
visibility impacts crash frequencies. There were several variables in the
crash data that were often not reported. These variables (e.g. blood alco-
hol level, shoulderwidth, distance from the intersection, driveway densi-
ty) were excluded from the analysis so efforts could be directed at the
variables thatwere consistently reported. Descriptive statistics of the var-
iables that were tested are shown in Table 1. The information in Table 1
shows how often a particular variable category is observed in the crash
records during a control period (excellent visibility) or one of the test pe-
riods (mediumvisibility or poor visibility). From the descriptive statistics,
for example, 16.6% of crashes in excellent visibility occurswhen themax-
imum speed (speed limit) is 45 to 60 mph. Crashes increased to 19.7%
when visibility is poor. For injury severity, there appears to be an increase
in the percentage of crashes that were recorded as injury crashes, from
nearly 48% of crashes in excellent visibility to 50% in poor visibility. The
percentage of crashes reported as property damage only decreases from
over 51% in excellent visibility to b49% in poor visibility. It suggests that
crash severity is likely to increase as visibility decreases. The analyses
that follow can account for other variables to test that observation.

2.3. Multicollinearity check

The variance inflation factor (VIF) is used to detect collinearity
(strong correlation between two or more predictor variables) that
causes instability in parameter estimation in regression models. VIF
can be defined as:

VIF ¼ 1= 1−R2
i

� �
ð1Þ

where:Ri2= co-efficient of determination of ith variable on all other
variables.

A general rule of thumb formulti-collinearity is to checkwhether VIF
is N10. No variable has a VIF value N10 in the final dataset. The correla-
tion values of Lighting, Weather, and Number of vehicles are closer to 1,
suggesting that these variables have strong linear relationship with at
least one other variables among these three variables.

2.4. Variable importance

The research team used a random forest algorithm assess variance
importance using a package with the R statistical software [15]. With
random forest algorithms, a randomly selected vector of input variables
(X=X1,…,Xn) to a random response variable Y∈y is considered for
analysis. The importance of a variable Xk while predicting or estimating
Y is calculated by the Gini index, calculated from adding the impurity
decreases in the following equation:

Importance Xkð Þ ¼ 1
NT

X
T

X
t∈T:v stð Þ¼Xk

p tð Þ:d ð2Þ

where:t = nodeT = all nodesp(t) = proportion Nt∕N of sample for
node t.st=split for which all variables are sampled into two major
nodes tL and tR to maximize the decrease, dv(st) = variable used in
split st

d ¼ i tð Þ−pLi tLð Þ−pRi tRð Þ ¼ decrease

NT = all variables.
If the Gini index is considered an impurity function, themeasurement

is known as Mean Decrease Gini. Variables with higher values of Mean
Decrease Gini are considered more important to the model. Fig. 3
shows the variable importance plot for the selected variables. Each
ith crash outcomes, IATSS Research (2017), https://doi.org/10.1016/
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Fig. 2. Airports, buffer areas, and crashes in Florida.
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variable is shown on the y-axis and variable importance on the x-axis.
The variables on the y-axis are ordered frommost to least important. Fa-
cility type and lighting condition are the two variables with lower Gini
index. These two variables are correlated with average shoulder width.
Due to lower significance and correlation with average shoulder width,
the authors omitted these variables for model development.

2.5. Selected variables

Seven variables were selected for testing in models based on values
of VIF, correlation, and Mean Decrease Gini. The selected variables are:

• Annual Average Daily Traffic (AADT)
• Driver Age
• Percentage of Trucks
Please cite this article as: S. Das, et al., Association of reduced visibility w
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• Skid Number
• Average Shoulder Width
• Maximum Speed
• Crash Severity

Histograms of the first six of these variables are shown in Fig. 4, di-
vided by crashes occurring in the three visibility groups. The distribu-
tions appear to be quite similar for all variables. The percentages in
each of the groups indicate relative percentages of the attributes in
that particular group. The most notable differences are for skid number
and driver age where there are peaks in the distributions for excellent
visibility that are not seen in the other visibility levels. For driver age,
higher numbers of crashes in excellent visibility condition are skewed
toward the younger drivers. No significant differences are visible in
ith crash outcomes, IATSS Research (2017), https://doi.org/10.1016/
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Table 1
Descriptive statistics.

Category Percentage of crashes

Excellent visibility Medium visibility Poor visibility

Functional class
Rural major collector 0.02% 0.01% 0.00%
Rural minor arterial 0.17% 0.17% 0.14%
Rural principal arterial 0.82% 0.79% 0.75%
Urban collector 0.57% 0.60% 0.23%
Urban local 0.01% 0.01% 0.00%
Urban minor arterial 21.22% 18.71% 18.62%
Urban other principal 53.91% 53.48% 56.69%
Urban principal arterial 19.71% 22.09% 19.93%
Unknown 3.57% 4.14% 3.65%

Maximum speed (mph)
0–30 7.89% 7.55% 7.76%
30–45 65.24% 61.73% 62.82%
45–60 16.62% 18.52% 19.74%
N60 10.25% 12.20% 9.68%

AADT (vehicle per day, vpd)
0–9999 3.76% 3.66% 3.41%
10,000–34,999 35.08% 33.46% 35.08%
35,000–54,999 30.92% 30.14% 30.92%
55,000–124,999 16.47% 18.03% 16.79%
N124,999 12.85% 13.81% 12.96%
Unknown 0.92% 0.91% 0.84%

Percentage of trucks
0–5 58.91% 56.90% 60.62%
5–10 35.19% 36.25% 32.32%
10–20 5.75% 6.55% 6.78%
N20 0.15% 0.30% 0.28%

Avg. shoulder width (ft.)
0.00–1.00 39.41% 38.73% 40.74%
1.01–3.00 16.67% 15.88% 15.34%
3.01–5.00 12.44% 11.22% 11.46%
5.01–10.00 23.72% 26.00% 25.12%
N10.00 6.19% 7.35% 6.50%
Unknown 1.57% 0.83% 0.84%
Divided 67.21% 69.08% 69.69%
Undivided 31.42% 29.54% 29.33%
Unknown 1.36% 1.39% 0.98%

Skid number
20–30 6.90% 7.80% 7.81%
30–40 67.73% 67.46% 65.39%
40–50 20.24% 19.27% 21.05%
N50 1.23% 0.83% 1.22%
Unknown 3.91% 4.65% 4.54%

Lighting condition
Dark(no street light) 3.42% 3.02% 5.75%
Dark(street light) 28.29% 23.34% 38.63%
Dawn/dusk 5.01% 4.87% 6.22%
Daylight 63.29% 68.77% 49.39%
Number of vehicles
Multi-vehicle 92.31% 91.66% 91.25%
Single vehicle 7.69% 8.34% 8.75%

Severity
Fatal 0.90% 0.56% 0.98%
Injury 47.96% 47.14% 50.09%
No injury 51.14% 52.30% 48.92%

Driver age
15–19 6.24% 6.58% 6.74%
20–29 26.14% 26.10% 27.08%
30–39 19.78% 18.70% 19.27%
40–49 18.63% 18.28% 18.29%
50–59 15.56% 13.89% 12.96%
60–69 8.37% 7.94% 7.39%
N70 5.19% 4.84% 4.07%
Unknown 0.09% 3.68% 4.21%
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the histograms of maximum speed, AADT, and percentage of trucks. For
shoulder width, the patterns are not similar for different levels of
visibility.

3. Analysis

3.1. Model development with ordinal logistic regression

The research team used ordinal logistic regression to perform the
analysis. The ordinal logistic regression models are also known as
cumulative link models. In this analysis, the response variable is the
crash occurrence due to visibility condition. Three ordinal response
categories are considered: excellent visibility, medium visibility, and
poor visibility. A cumulative link model will be developed based on
the ordinal response variable, for example, Yiwith k=1,…,K categories
[whereK≥2]. Then Yi follows amultinomial distributionwith parameter
π. The cumulative probabilities can be defined as:

Yik ¼ P Yi ≤kð Þ ¼ πi1 þ…þ πik ð3Þ

where:πik=probability of ith observation for response category k.
The cumulative logistic function is:

logit yikð Þ ¼ logit P Yi≤kð Þð Þ ¼ log
P Yi ≤kð Þ

1−P Yi≤kð Þ
� �

where : k

¼ 1;…; k−1 ð4Þ

Note that the logit functions are defined as logitðπÞ ¼ log½ π
1−π�. A cu-

mulative link with a logistic link can be written as:

logit yikð Þ ¼ θk−Xμ ð5Þ

where:θk =parameters act as intercepts or horizontal displacementsX=
transpose of a vector of predictor variables for the ith observationμ =
matching set of regression parameters.

It is important to note that Xμ is dependent on k categories. There-
fore, it is considered that μ has the same effect for each of the K−1
cumulative logits. The odds ratio (OR) of the event Y(≤k) at x1 relative
to event Y(≤k) at x2 is:

Odds Ratio ORð Þ ¼
yk x1ð Þ

1−yk x1ð Þ½ �
yk x2ð Þ

1−yk x2ð Þ½ �
¼ exp θk−Xμð Þ

exp θk−Xμð Þ ¼ exp xT2−xT1
� �

μ
� 	 ð6Þ

Here, the odds ratio is independent of k. Thus, the cumulative odds
ratio is proportional to the distance between x1 and x2. Therefore, the
cumulative logit model is also known as proportional odds model. The
analysis was performed with open source statistical software R [15,16,
17]. Table 2 lists the values of the estimates of the first model. The first
part of the outputs lists the regression coefficient values, standard er-
rors, and p- values. By observing the p-values, it is found that maximum
speed, skid number, and driver age have higher significance (p b 0.05).
Severity is significant when the threshold of p is lower than 0.1. AADT is
not significant by considering p b 0.1. One reason is that the impact of
AADT is not significant in the model, as it is not considered in log
scale. The 2.5% and 97.5% confidence interval values of these variables
do not contain zero, which is also a good indicator of significance. The
next part of Table 2 lists the estimates for the two intercepts (intercept
between excellent visibility and medium visibility and intercept
between medium visibility and poor visibility) to form three response
categories. The intercepts indicate where the latent variable is cut to
make the ordered subdivision in visibility score. The final part of the
outputs provides −2loglikelihood of the model as well as the AIC
value, used later for model selection.

The research team developed another model (model 2) by omitting
percentage of trucks and average shoulder width because both of these
ith crash outcomes, IATSS Research (2017), https://doi.org/10.1016/
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Fig. 3. Variable importance from random forest algorithm.

Fig. 4. Histogram of key variables.
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Table 2
Estimates from ordinal cumulative link model (model 1).

Variables and statistical measures Combined

Estimate 2.50% 97.50% St. Er. z Pr(N|z|) Significance

Variables
Severity: injury 0.265 −0.032 0.562 0.152 1.750 0.080 .
Severity: noinjury 0.263 −0.034 0.560 0.151 1.736 0.083 .
Maximum speed 0.008 0.004 0.012 0.002 4.048 0.000 ***
AADT 0.000 0.000 0.000 0.000 −2.536 0.011 *
Skid number −0.006 −0.010 −0.003 0.002 −4.209 0.000 ***
Percentage of trucks 0.001 −0.008 0.010 0.005 0.197 0.844
Avg. shoulder width 0.003 −0.007 0.013 0.005 0.536 0.592
Driver age −0.006 −0.007 −0.004 0.001 −7.273 0.000 ***

Intercepts
Visibility: excellent|medium 0.124 0.171 0.722
Visibility: medium|poor 2.462 0.172 14.305

Statistical measures
AIC 43,888.17
Log likelihood −21,934.08
Maximum gradient 6.38E–07
Conditional H 4.60E+12

Note: .: p b 0.10, *: p b 0.05, **: p b 0.01, ***: p b 0.001.

Table 4
Odds ratios for model variables.

Variables Odds ratio
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factors were insignificant in Model 1. The two models are compared in
Table 3. The p-value of the test is 0.836, meaning that the Model 2 is
not significantly different from Model 1. As Model 2 is not significantly
different from Model 1, the research team used Model 1 as the final
model.

3.2. Odds ratios

The interpretation of proportional odds ratios in cumulative link
models is same as the odds ratios from a binary logistic regression
model. Table 4 lists the odds ratio of the variables for the comparison
of poor visibility to excellent and medium visibility. For injury crashes,
the odds of injury severity in poor visibility versus medium visibility
or excellent visibility combined is 1.304, indicating a 30% greater chance
of a crash resulting in injury during poor visibility (assuming all other
variables are held constant). For continuous variables, the odds ratio in-
dicates the change in likelihood of a poor visibility crash for each unit
change in the listed variable. For the maximum speed (odds ratio is
1.008 per 5 mph), the probability that the visibility at the time of the
crash is poor (instead of medium or excellent visibility) increases
1.008 times higher for each 5-mph increase in speed. The odds ratio
for skid number indicates there is a decrease in the likelihood of a
poor visibility crash for increases in skid number. The odds ratio for
AADT is 1, which indicates that the effect of AADT is negligible when
considering the effect of visibility on crashes.

3.3. Crash probabilities by visibility level

Using the model results, the probabilities of a crash with a specific
visibility level are plotted in Fig. 5, divided by the injury severity and
independent variable. Plots for four independent variables are shown
(the variables shoulder width and percentage of trucks are not shown
as they were not significant in the original model). These plots can be
used to examine how the probability that a particular visibility level is
represented in the crash data changes as each independent variable
changes.
Table 3
Model comparison.

Variables AIC Loglikehood LR Stat Pr (NChisq)

Model 2 43,885 −21,934
Model 1 43,888 −21,934 0.3582 0.836

Please cite this article as: S. Das, et al., Association of reduced visibility w
j.iatssr.2017.10.003
In Fig. 5a, therewere not enough crashes to identify a connection be-
tweenmaximum speed and visibility level for fatal crashes. However, as
themaximum speed increases, there is a decrease in the likelihood that
an observed crash occurred in excellent visibility compared to medium
and poor visibility for both the injury and no injury crashes. There ap-
pear to be no common trends for AADT in Fig. 5b, but Fig. 5c suggests
that increases in measured friction lead to crash reductions in medium
and poor visibility. The probability that a crash from the dataset is
coded as occurring in medium and poor visibility decreases while the
probability for excellent visibility increases. This happens for all severity
levels. Finally, driver age is shown as affecting the crash probabilities of
all severity levels aswell. The probability of a crash occurring inmedium
and poor visibility decreases compared to that of excellent visibility as
age increases. This should not be surprising as drivers are less likely to
drive in inclement weather as they age.
4. Conclusion

There is literature gap in determining the quantification of visibility
and its association with crash or crash severity. Past studies show that
there is a possible association between reduced visibility and crashes.
The quantification part requiresmore exploration on real-time visibility
score and its association with the severity of crashes. This study consid-
ered visibility status as response and quantified its association with vis-
ibility and other significant variables. The current study evaluated
several of the factors that influence crashes during reduced periods of
visibility during inclement weather. While previous research confirms
that driver behavior changes during inclement weather, it is clear that
there remain safety concerns due to reduced visibility. This study aims
to investigate the impact of the level of visibility while driving with
Severity: injury 1.304
Severity: no injury 1.301
Maximum speed 1.008 (per 5 mph)
AADT 1.000 (per 10,000 vpd)
Skid number 0.994 (per 5 units of skid resistance)
Percentage of trucks 1.001
Average shoulder width 1.002
Driver age 0.994 (per 10 years of age)

ith crash outcomes, IATSS Research (2017), https://doi.org/10.1016/
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other associated factors. Unless technology is able to adapt to the condi-
tions drivers regularly drive in and overcome the limitations that
human drivers have, the crash patterns are likely to continue with the
same effects identified in this study.

Ahmed et al. [18] were unable to connect roadway geometry and
traffic tomodels that identify effects of visibility conditions. Thefindings
of this study concur that there is difficultyfinding geometric or traffic ef-
fects when focusing on visibility. Shoulder width and truck percentage
do not have significant effects, and AADT has small consequence. During
low visibility, people tend to drive less. Thus, volumes are not positively
associatedwith low visibility. The variables that appearmost interesting
are skid number and driver age, suggesting that higher friction reduces
crashes in inclement weather and the old drivers are less likely to be in
crashes in inclement weather.

The findings suggest that drivers are less likely to be involved in a
crash during poor visibility conditions, as they get older. This is not sur-
prising as older drivers are likely to apply caution and simply not drive
in inclement weather [19]. A large part of the reduced traffic volumes in
inclementweather as observed by Bartlett et al. [4] is likely to first come
Please cite this article as: S. Das, et al., Association of reduced visibility w
j.iatssr.2017.10.003
from the older drivers that tend to be more cautious, as suggested by
Abdel-Aty et al. [7].

This study has several limitations. The current study does not con-
sider the inclusion of naturalistic driving study (NDS) data to determine
the association of human behavioral aspects.

Although this study developed statistically significant models, more
advanced formulations may be applied with the inclusion of different
conditions like roadway geometry, weather patterns, driver behavioral
characteristics, and demographics in different regions. Another limita-
tion of the study is the unavailability of the exposure matrices. More-
over, visibility scores were determined based on the proximity to the
airport weather station data. This limitation can be reduced by using
roadside weather station data [20], which was not available for Florida.
Due to these limitations, the current findingswould be limited to the re-
gions with similar weather patterns. The authors recommend that fu-
ture studies should focus on the current limitations. The authors also
recommend that future studies may incorporate SHRP-2 naturalistic
driving study (NDS) to determine the effect of driver behavior during
adverse weather condition.
ith crash outcomes, IATSS Research (2017), https://doi.org/10.1016/
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The findings of this study would be useful for safety professionals to
reemphasize the impact of visibility while driving. As low visibility can
be considered as a difficult driving situation, the outcomes of this re-
search can be used for the safety threshold determination of self-driving
cars. If the performance matrices of the self-driving cars can overcome
the performancematrices of human driving during difficult driving con-
ditions like low visibility, the real-world integration of self-driving cars
would be evident.
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